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Two new xenia diterpenoids, xeniatine A (1) and xeniaether A
(2), the latter containing a tetrahydrofuran, have been isolated
from a soft coral, Xenia sp.

Soft corals belonging to the genus Xenia have proved to be a
rich source of 9-membered monocarbocyclic diterpenoids called
xenia diterpenoids.! In the course of the investigation of
biologically active constituents of Xenia sp. collected in the area
of Bonotsu, Kagoshima,2 we-have isolated two new xenia
diterpenoids, xeniatine A (1) and xeniaether A (2) from the
methanol extract of an unidentified Xenia species.

Xeniatine A (1),3 CyoH,804, was isolated as needles, mp
150-152 °C. The IR spectrum showed absorption bands for a
hydroxyl group (3300 cm"l), a conjugated lactone carbonyl
(1725 cm™!), and a double bond (1670 cm™!). The IH NMR
spectral data were similar to those of xeniolide-A,4 except for
resonances due to the 9-membered ring, the structure of which
was elucidated as follows. Resonances due to methyl protons on
a carbon bearing a hydroxyl group (8 1.36; s, H-18) and doubly
allylic methylene protons (d 2.88; dd, /=7.3 and 12.1 Hz and d
3.21; t, J=12.1 Hz, H-10) were observed. The methylene
protons were coupled to an olefinic proton at & 5.42 (dt, J=7.3
and 12.1 Hz, H-9), which in turn was coupled to another olefinic
proton at d 5.73 (d, J=12.1 Hz, H-8). Two singlets at 5 4.59
and 4.91 (1H each) was assigned to exo methylene protons at C-
19. These results suggested a gross structure shown in 1. Final
confirmation of the structure and stereochemical details was
provided by single-crystal X-ray diffraction as depicted in Figure
1.5

Figure 1. Perspective
ORTEP drawing of 1.
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Xeniaether A (2),6 CoH3003, oil, had absorption bands for a
hydroxyl group (3400 cm™!) and a conjugated diene (1630 cm™1),
but no lactone carbonyl in the IR spectrum. The gross structure
was assigned by use of extensive NMR techniques including !H-
1H-COSY and 13C-1H COSY experiments and by comparison of
the NMR spectra of 2 with those of 1. Thus, resonances due to
two olefinic methyl protons at & 1.77 (6H, s, H-16 and H-17)

and olefinic protons at d 5.51 (1H, d, /=15.4 Hz, H-12), 5.83

(1H, br d, J=11.0 Hz, H-14), and 6.50 (1H, dd, /=11.0 and
15.4 Hz, H-13) were assigned, suggesting a 4-methyl-1,3-
pentadine moiety. The presence of a hydroxymethyl group was
deduced by the lowfield chemical shifts of the proton signals (&
3.52 and 3.60; AB, J=11.4 Hz). This was also confirmed by
acetylation of 2 to give a monoacetate (3),7 CopH3405. The
chemical shifts of the corresponding protons in the !H NMR
spectrum of 3 were shifted to downfield by 0.55 ppm compared
to those of 2. Oxymethylene protons at d 3.78 (1H, t-like, /=8.4
Hz, H-1a) and 3.95 (1H, t-like, /=8.4 Hz, H-1B) in the 1H
NMR spectrum of 2 were coupled to H-1la (d 2.83;
overlapped), which in turn was coupled to H-4a (3 2.79; dt,
J=4.0 and 9.2 Hz). The chemical shifts of C-1 (5 69.9, d) and
C-4 (5 87.3, s) in the 13C NMR spectrum indicated that C-1 and
C-4 could be connected to the same oxygen atom, implying that 2
contained a tetrahydrofuran ring, and hence both side chain and
hydroxymethyl group were located at C-4.

The relative
stereochemistry of all
chiral centers was
elucidated from the
observed NOE data
(Figure 2). It was
concluded that H-4a
and the diene moiety
occurred on the same
face of the ring, since
irradiation of H4a
resulted in a 7.2 and
5.8% peak enhancement of H-12 and H-13, respectively. NOEs
between H-11a and H-1f (® 3.95, 7.2%) and H-3 (d 3.60,

2.5%) were observed, suggesting that H-1§, H-3, and H-11a
were on the opposite face to H-4a. The major conformer of the
9-membered ring was inferred from the observation of NOEs
from H-4a to H-10a (5.1%) and from H-6endo to H-8 (2.6%)
and H-11a (6.2%). The stereochemistry of the methyl group at
C-7 was determined to be § on the basis of a NOE between H-8
and H-18 (3.4%). The geometry of the olefinic bond at C-12
was deduced to be E from the value of the coupling constant
between H-12 and H-13 (J=15.4 Hz). Thus, the relative
structure 2 could be assigned to xeniaether A.

Xenia diterpenoids have been structurally divided into three
types: xenicins, xeniolides, and xeniaphyllanes.# Xeniaether A is
unique in that it contains a 9-membered monocarbocyclic skeleton
fused to a tetrahydrofuran. It is noteworthy that the presence of
xeniacther A suggested that xenicins, xenialactols,8 and
xeniolides, as well as xeniaether A might be formed from a
common precursor such as 4 containing a 1,3-dihydroxymethyl

group.

Figure 2. NOE (%) observed for 2.
R=diene moiety.
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1: [a]7 +462.0° (c 0.08, MeOH); UV Amax 267 nm (g
17600); IR (Nujol) 3300, 1725, 1670, and 1635 cm™!; 1H
NMR (400 MHz, CDCl3): 8 1.32 and 1.34 (3H each, s, H-
16 and H-17), 1.36 (3H, s, H-18), ca 1.36 (1H, m, H-
5B), 1.78 (1H, dd, J/=5.9 and 15.8 Hz, H-68), 1.91 (1H,
tq, /=2.2 and 13.6 Hz, H-5a), 2.55 (1H, dt, /=2.0 and
14.2 Hz, H-6a), 2.71 (1H, dt, /=5.3 and 11.6 Hz, H-
11a), 2.88 (1H, dd, /=7.3 and 12.1 Hz, H-10endo), 3.21
(1H, t, J=12.1 H-10exo0), 3.91 (1H, dt, J=5.3 and 11.5
Hz, H-4a), 4.01 (1H, t, J=11.5 Hz, H-1a), 4.33 (1H, dd,
J=5.3 and 11.5 Hz, H-1pB), 4.59 and 4.91 (1H each, s, H-
11), 5.42 (1H, dt, /=7.3 and 12.1 Hz, H-9), 5.73 (1H, d,
J=12.1 Hz, H-8), 6.22 (1H, d, J=15.0 Hz, H-14), 6.44
(1H, dd, J=11.5 and 15.0 Hz, H-13), and 6.91 (1H, d,
J=11.7 Hz, H-12); 13C NMR (100 MHz, CDCl3): 5 29.3
and 30.0 (C-16 and C-17), 33.0 (C-18), 33.6 (C-5), 36.1
(C-4a), 37.6 (C-10), 38.4 (C-6), 42.7 (C-11a), 68.8 (C-
1), 71.2 (C-15), 73.5 (C-7), 111.8 (C-19), 120.6 (C-13),
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127.9 (C-9), 131.5 (C-4), 137.5 (C-8), 137.7 (C-12),
144.7 (C-11), 150.1 (C-14), and 170.5 (C-3). MS m/z
314 (M*+-H20). Found: m/z 314.1881. Calcd for
C20H2603: M-H,0, 314.1881.

Y. Kashman and A. Groweiss, Tetrahedron Lett., 1978,
4833.

Crystal data for 1: CpoH2304 MW (332.42),
orthorhombic, space group P212121, a=13.544(3),
b=23.034(2), ¢=6.574(3) A, V=2050.909) A, A=1.54178
A, Z=4, D;=1.180 g/cm3, T=296 K, W(Cu-Ka)=6.3 cm"L.
1811 reflection with IFpl>3c(IFpl)(20max=120.1°)
converged at R=0.046 and Rw=0.025.

2: [a]? +135.7° (¢ 0.07, MeOH); UV Amax 240 nm (g
16800); IR (film) 3400, 1660, and 1640 cm™l; IH NMR
(CDCl3): & 1.33(3H, s, H-18), 1.48-1.55 (1H, m, H-58),
1.77 (6H, s, H-16 and H-17), 1.84-1.90 (2H, m, H-5a
and H-6a), 2.07-2.13 (1H, m, H-6B), 2.79 (1H, dt,
J=4.0 and 9.2 Hz, H-4a), 2.83 (1H, overlapped, H-11a),
2.86 (1H, dd, /=8.8 and 13.9 Hz, H-10a), 3.28 (1H, dd,
J=8.4 and 13.9 Hz, H-10p), 3.52 and 3.60 (2H, AB,
J=11.4 Hz, H-3), 3.78 (1H, t-like, /=8.4 Hz, H-1a), 3.95
(1H, t-like, /=8.4 Hz, H-1pB), 4.87 and 4.92 (1H each, s,
H-19), 5.42-5.52 (1H, overlapped with other signals, H-
9), 5.51 (1H, 4, J=15.4 Hz, H-12), 5.54 (1H, d, J=12.1
Hz, H-8), 5.83 (1H, br d, /=11.0 Hz, H-14), and 6.50
(1H, dd, /=11.0 and 15.4 Hz, H-13); 13C NMR (CDCl3):
518.4 (C-17), 23.6 (C-5), 26.0 (C-16), 32.9 (C-18), 35.4
(C-10), 39.2 (C-6), 49.4 (C-11a), 50.3 (C-4a), 64.7 (C-
3), 69.9 (C-1), 73.9 (C-7), 87.3 (C-4), 1124 (C-19),
124.6 (C-12), 126.7 (C-13), 129.0 (C-9), 132.1 (C-14),
136.0 (C-11), 137.1 (C-8), and 146.3 (C-15); MS m/z 318
(M*). Found: m/z 318.2175. Caled for CooH3003: M,
318.2193.

3; oil, IR (film) 3400, 1740, 1650, 1630, and 1235 cm™1;
IH NMR (CDCI3): 8 2.07 (3H, s, OAc); !13C NMR
(CDCIl3): d 21.1 (OCOCH3) and 171.0 (OCOCH3); MS
miz 360 (M),

A. Groweiss and Y. Kashman, Tetrahedron, 39, 3385
(1983).



